
AdaNDV: Adaptive Number of Distinct Value Estimation via
Learning to Select and Fuse Estimators

Xianghong Xu
ByteDance

Beijing, China
xuxianghong@bytedance.com

Tieying Zhang∗
ByteDance

San Jose, USA
tieying.zhang@bytedance.com

Xiao He
ByteDance

Hangzhou, China
xiao.hx@bytedance.com

Haoyang Li
ByteDance

Beijing, China
lihaoyang.cs@bytedance.com

Rong Kang
ByteDance

Beijing, China
kangrong.cn@bytedance.com

Shuai Wang
ByteDance

Beijing, China
wangshuai.will@bytedance.com

Linhui Xu
ByteDance

Beijing, China
xulinhui@bytedance.com

Zhimin Liang
ByteDance

Beijing, China
liangzhimin@bytedance.com

Shangyu Luo
ByteDance

San Jose, USA
shangyu.luo@bytedance.com

Lei Zhang
ByteDance

Shenzhen, China
zhanglei.michael@bytedance.com

Jianjun Chen
ByteDance

San Jose, USA
jianjun.chen@bytedance.com

ABSTRACT

Estimating the Number of Distinct Values (NDV) is fundamental
for numerous data management tasks, especially within database
applications. However, most existing works primarily focus on in-
troducing new statistical or learned estimators, while identifying
the most suitable estimator for a given scenario remains largely
unexplored. Therefore, we propose AdaNDV, a learned method
designed to adaptively select and fuse existing estimators to ad-
dress this issue. Specifically, (1) we propose to use learned models
to distinguish between overestimated and underestimated estima-
tors and then select appropriate estimators from each category.
This strategy provides a complementary perspective by integrating
overestimations and underestimations for error correction, thereby
improving the accuracy of NDV estimation. (2) To further integrate
the estimation results, we introduce a novel fusion approach that
employs a learned model to predict the weights of the selected
estimators and then applies a weighted sum to merge them. By
combining these strategies, the proposed AdaNDV fundamentally
distinguishes itself from previous works that directly estimate NDV.
Moreover, extensive experiments conducted on real-world datasets,
with the number of individual columns being several orders of mag-
nitude larger than in previous studies, demonstrate the superior
performance of our method.

PVLDB Reference Format:

Xianghong Xu, Tieying Zhang, Xiao He, Haoyang Li, Rong Kang, Shuai
Wang, Linhui Xu, Zhimin Liang, Shangyu Luo, Lei Zhang, and Jianjun
Chen. AdaNDV: Adaptive Number of Distinct Value Estimation via
Learning to Select and Fuse Estimators. PVLDB, 18(4): 1104 - 1117, 2024.

∗Tieying Zhang corresponds to this work.

doi:10.14778/3717755.3717769

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/bytedance/adandv.

1 INTRODUCTION

Identifying the Number of Distinct Values (NDV) in a data column
is a fundamental task across numerous data management scenarios,
particularly within the database domain. However, directly obtain-
ing NDV is often impractical in real-world scenarios due to the
prohibitive overheads of processing massive data volumes or data
access restrictions. Therefore, estimating NDV on limited samples
has been a critical and longstanding research topic, explored for
over seven decades [27]. For instance, in the realm of Biology, a
critical task is to estimate unseen species [15, 53, 54]. Similarly, in
Statistics, a recurring engagement involves quantifying the number
of distinct categories within a given population [18, 27]. Moreover,
in the domain of Networks, assessing the quantity of virtualized
devices is a significant challenge [23, 40]. In Database, some widely
used systems (e.g., Spark and PostgreSQL) directly rely on NDV
to compute cardinality, a metric that is subsequently utilized by
the query optimizer [9, 10]. Besides, NDV affects the join order
selection in MySQL as well [8]. Furthermore, recent studies show

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717769

https://doi.org/10.14778/3717755.3717769
https://github.com/bytedance/adandv
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3717755.3717769

Figure 1: Evaluation of fourteen statistical estimators on

25,159 test columns, where the bar represents the proportion

of each estimator achieving the optimality (lowest estimation

error) among the fourteen estimators. No single estimator

achieves optimality on more than 40% of test cases.

that precise NDV estimation can generate better query plans that
bring significant SQL query execution latency reductions [29, 36].

Prolonged research efforts in NDV estimation have accumulated
numerous NDV estimators, the majority of which are statistical
methods relying on manually designed polynomials computing
or equation-solving [15, 18–21, 27, 28, 28, 42, 47–52]. Each statis-
tical estimator is grounded in distinct hypotheses regarding the
underlying distribution. As a result, their efficacy markedly declines
when the actual distribution does not conform to their assumptions.
Recently, some studies have introduced learned estimators based
on Machine Learning (ML) techniques [34, 57] to solve this issue,
demonstrating better performance than statistical estimators. Nev-
ertheless, despite the significant progress achieved, the domain of
NDV estimation is still beset by the following difficulties:
(1) Selection dilemma. Although a plethora of estimators exist,
there frequently remains ambiguity regarding the optimal choice
for practical application. The question of which estimator is most
suitable for a specific data column has received scarce attention
over time. As new estimators continue to be introduced, this under-
studied question becomes increasingly substantial. To intuitively
show the selection dilemma, we depict the performance of four-
teen statistical estimators on a large dataset comprising 25,159 test
cases (for additional details, please refer to Section 4.1) in Figure 1.
The results illustrate that no single estimator consistently achieves
the lowest estimation error across all test cases, indicating that no
individual estimators can consistently beat others. For instance, the
top-performing estimator, Shlosser, only manages to outperform
others in roughly 40% of the cases. This observation highlights
the intricate nature of selecting a suitable estimator from a set of
available options.
(2) Underexploitation issue. Most studies have focused on ex-
ploring new estimators, including the recently proposed learned
estimator [34, 57], while exploiting existing estimators to improve
estimations has been largely overlooked. To better illustrate the is-
sue, we conceptualize a hypothetical estimator, which involves pick-
ing one of the aforementioned fourteen statistical estimators, under
the hypothetical condition that we know the actual estimation
errors in advance. Precisely, we name the hypothetical estimator
“Hypo-optimal” since we select the estimator with the lowest actual

Table 1: Experiments on hypothetical estimators. The num-

bers represent estimation errors, with lower values indicating

better performance.

Estimator Mean 50% 75% 90% 95% 99%

Hypo-optimal 1.20 1.08 1.28 1.56 1.83 2.36

SOTA learned estimator
[57]

2.24 1.72 2.28 3.20 4.11 10.46

estimation error for every test. The performance of the hypothetical
estimator and a state-of-the-art (SOTA) learned estimator [57] is
shown in Table 1. From the results in the table, it is evident that
the Hypo-optimal estimator considerably outperforms the SOTA
learned estimator. The comparison illustrates the substantial poten-
tial held by statistical estimators, simultaneously underscoring the
critical significance of judiciously exploiting estimators.

Inspired by the above observations, in this paper, we introduce
AdaNDV, an Adaptive NDV estimation method learning to select
the proper estimators from existing ones and to fuse their estima-
tion results to enhance estimation precision for different scenarios.
Selecting the optimal estimator with high accuracy is quite challeng-
ing because it is difficult to extract adequate features and explore
appropriate ML models. On the contrary, selecting the 𝑘 estimators
that are most likely to approach the ground truth is a relatively eas-
ier task for ML models [37]. Moreover, we distinctively propose to
address the issue by distinguishing whether an estimator is overes-
timated or underestimated, allowing us to utilize them accordingly.
Specifically, if one estimator overestimates and another underesti-
mates for a test case, there exists a set of weights such that their
weighted sum performs better than either estimator individually.
This approach inherently leverages the complementary nature of
overestimations and underestimations to reduce estimation error.
In addition, in our initial experiments, we found that certain base
estimators tend to make more overestimations or underestimations,
indicating that distinguishing between overestimating and under-
estimating estimators is a comparatively easier task. Subsequently,
we select the estimators with leading overestimation and underes-
timation performance respectively. Further, we introduce a learned
model to predict the weights of the chosen estimators and then
establish the ultimate estimation by applying a weighted sum to
fuse them. Different from the previous works that directly estimate
NDV, our method offers a novel approach to enhance the accuracy
of NDV estimation by merging existing estimators. This allows
our method to adaptively select appropriate estimators for specific
scenarios and allocate proper weights to fuse them for end-to-end
estimation. Finally, extensive experiments are carried out on a vo-
luminous dataset from the real world. Specifically, the number of
individual test columns exceeds tens of thousands, while previous
works were tested on at most about two hundred columns. This
orders of magnitude increase in individual test columns enables a
thorough evaluation encompassing existing estimators alongside
our novel approach.

To sum up, the main contributions are shown as follows:

• We propose AdaNDV, an adaptive NDV estimation method
learning to select and fuse appropriate estimators for spe-
cific scenarios. To the best of our knowledge, we are the
first to combine existing estimators with ML techniques to
improve NDV estimation.

• We introduce an innovative overestimation-underestimation
complementary perspective for estimator selection and ex-
ploitation to reduce estimation error.

• We develop a novel learned weighted sum strategy to fuse
the estimation results to obtain the ultimate estimation,
which is significantly different from directly estimating
NDV.

• Extensive experiments, conducted on a rich, real-life dataset
with tens of thousands of individual columns, significantly
larger than at most hundreds of columns used in past stud-
ies, demonstrate the superiority of AdaNDV.

2 PRELIMINARIES

2.1 Problem Statement

Existing NDV estimation methods can be categorized into sketch-
based [25, 26, 31] and sampling-based [27, 34, 57], while most of the
former require scanning all the data, making them impractical in
many scenarios. Here, we focus on sampling-based NDV estimation.
NDV Estimation Definition. Given a data column 𝐶 with 𝑁
rows, let 𝐷 be the NDV of column 𝐶 . The task is to estimate 𝐷 by
uniformly sampling 𝑛 (𝑛 ≤ 𝑁) rows (denoted 𝑆 , and 𝑆 ⊆ 𝐶) from
𝐶 . Let 𝑟 = 𝑛/𝑁 be the sampling rate, and we assume 𝑁 is known.
We define 𝑑 as the NDV of 𝑆 .

Two features are widely discussed in sampling-based NDV esti-
mation: frequency and frequency profile.
Frequency. The frequency of a value 𝑥 in𝐶 is the number of times it
appears in 𝐶 . Denote 𝑁𝑥 =

∑
𝑖∈𝐶 1𝑥 (𝑖), where 𝑁𝑥 is the frequency

of value 𝑥 in 𝐶 , 1𝑥 (·) is the indicator function that returns 1 if the
input equals to 𝑥 and 0 otherwise. Similarly, 𝑛𝑥 =

∑
𝑖∈𝑆 1𝑥 (𝑖) is the

frequency of value 𝑥 in 𝑆 .
Frequency Profile. Frequency profile is the frequency of frequency.
Let the frequency profile of𝐶 be 𝐹 = (𝐹 𝑗) 𝑗=1,2,...,𝑁 , where 𝐹 𝑗 = |{𝑖 ∈
𝐶 |𝑁𝑖 = 𝑗}|. Similarly, the frequency profile of 𝑆 be 𝑓 = (𝑓𝑗) 𝑗=1,2,...,𝑛 ,
where 𝑓𝑗 = |{𝑖 ∈ 𝑆 |𝑛𝑖 = 𝑗}|.
Feature Relations and Examples. The two features are closely
related to NDV and the number of rows. We can get 𝐷 = |{𝑖 ∈
𝐶 |𝑁𝑖 > 0}| = ∑𝑁

𝑗=1 𝐹 𝑗 and 𝑑 = |{𝑖 ∈ 𝑆 |𝑛𝑖 > 0}| = ∑𝑛
𝑗=1 𝑓𝑗 . Besides,

the total number of rows can be expressed as 𝑁 =
∑𝑁

𝑗=1 𝑗 · 𝐹 𝑗 , and
𝑛 =

∑𝑛
𝑗=1 𝑗 · 𝑓𝑗 .

For instance, suppose the sample data is 𝑆 = {𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑏, 𝑐, 𝑐, 𝑑},
we can observe that the sample size is |𝑆 | = 9, and 𝑑 = 4 (there are
𝑎, 𝑏, 𝑐, 𝑑 four distinct values). The frequency of 𝑆 is {𝑛𝑎 = 3, 𝑛𝑏 =

3, 𝑛𝑐 = 2, 𝑛𝑑 = 1}, and the frequency of frequency is {𝑓1 = 1, 𝑓2 =

1, 𝑓3 = 2, 𝑓𝑖 = 0, 𝑖 = 4, . . . , 9}. Based on these features, we can get
𝑑 =

∑9
𝑖=1 𝑓𝑖 = 4, and |𝑆 | = ∑9

𝑖=1 𝑖 · 𝑓𝑖 = 9.

2.2 NDV Estimators

We use several representative estimators to demonstrate how they
use the frequency profile of sample data to estimate NDV.

Traditional Estimators. Goodman [27] is a representative linear
polynomial estimator with a sophisticated expression:

𝐷Goodman = 𝑑 +
𝑛∑︁
𝑖=1
(−1)𝑖+1 (𝑁 − 𝑛 + 𝑖 − 1)!(𝑛 − 𝑖)!(𝑁 − 𝑛 − 1)!𝑛! 𝑓𝑖 . (1)

Chao [18, 42] estimator has a nonlinear polynomial expresion:

𝐷Chao = 𝑑 +
𝑓 21
2𝑓2

. (2)

Besides, some estimators need to solve sophisticate non-linear
equations constructed by the frequency profiles [15, 20, 49–51].
For instance, Sichel [49–51] estimator needs to solve the following
non-linear equations:

(1 + 𝑔) ln𝑔 −𝐴𝑔 + 𝐵 = 0,
𝑓1
𝑛

< 𝑔 < 1, 𝐴 =
2𝑛
𝑑
− ln 𝑛

𝑓1
,

𝐵 =
2𝑓1
𝑑
+ ln 𝑛

𝑓1
, 𝑏 =

𝑔 ln 𝑛𝑔

𝑓1

1 − 𝑔 , 𝑐 =
1 − 𝑔2

𝑛𝑔2
, 𝐷Sichel =

2
𝑏𝑐
.

(3)

Learned Estimators. Recently, ML techniques have been intro-
duced into NDV estimation [34, 57]. Wu et al. [57] proposed a
learned statistician (LS in short) to estimate NDV. It constructs a
multi-layer perception (MLP) as the estimator, which takes the cut-
off of the frequency profile and some features as input and outputs
the estimated NDV. It is trained in the regression paradigm, which
minimizes the 𝐿2 loss between the estimated NDV and the ground
truth.
Evaluation Protocol. Ratio-error, also known as q-error [38], is
widely used to evaluate the performance of an estimator in database
applications:

q-error = max(�̂�
𝐷
,
𝐷

�̂�
), (4)

where �̂� is the estimated NDV and 𝐷 is the ground truth NDV. The
lower error represents the better performance.

3 METHODOLOGY

3.1 Model Architecture

3.1.1 Overview ofAdaNDV. The architecture of AdaNDV is shown
in Figure 2 and there are four components.
(1) Base estimators collection. We collect fourteen representative
statistical estimators as our base estimators, detailed in Section 4.1.
We do not include learned estimators due to the limited availability
of such estimators and nontrivial overhead associated with training
them. Additionally, statistical estimators offer higher efficiency and
are free of training.
(2) Leading estimator selection. “OverEst” and “UnderEst” repre-
sent overestimation and underestimation. Estimator selection is
designed to prioritize the base estimators by their overestimation
and underestimation errors. Essentially, the prioritization of a set of
base estimators entails assigning them scores that reflect their per-
formance in terms of overestimation and underestimation errors.
Specifically, we use two identical learned models with different
training objectives to prioritize the two types of estimators. The
loss functions of the two models are denoted as Lover and Lunder,
respectively. This component will be detailed in Section 3.2.

All Base
Estimators

OverEst
Selection

UnderEst
Selection

Estimator
WeighterSample data

learned model
base estimators

OverEst
Selection

UnderEst
Selection

Estimator
WeighterSample data

Training

1

2

2

3

3

4

4

5

5

6

6

7

7

7 8

8

8

9

10

1

1

Inference

2

2 3

3

4

4

4

5

5

5

6

Figure 2: Overview of AdaNDV on NDV estimation including training and inference data pipelines.

(3) Estimator fusion. We first select estimators with the top-𝑘 over-
estimated and underestimated performance, denoted as Iover and
Iunder. Next, we use a learned model to assign weights to each
selected estimator, and then employ a weighted sum to compute
the NDV. For instance, suppose 𝑘 is 1, the ground truth NDV 𝐷

is 10,000, and the estimation results of the selected estimators are
�̂�1 = 11, 000 and �̂�2 = 9, 000, our estimation is formulated as
�̂� = Λ1�̂�1 +Λ2�̂�2, 0 ≤ Λ1,Λ2 ≤ 1,Λ1 +Λ2 = 1. This fusion method
can reduce estimation errors based on existing estimators. The loss
function of this component is denoted as Lest and its details will
be elaborated in Section 3.3.
(4) Model training. There are three objectives in AdaNDV, and we
can derive the end-to-end loss function to train our method:

LAdaNDV = Lover + Lunder + 𝛽Lest, (5)

where 𝛽 is a hyperparameter that modulates the trade-offs between
different kinds of training objectives. Our proposed method can be
trained by minimizing the LAdaNDV loss function.
Training pipeline. 1○All base estimators use the sample data to
estimate NDV. 2○It is straightforward to distinguish the overesti-
mated and underestimated estimators on the training data, and then
we construct training labels 𝑦over and 𝑦under. 3○- 4○The estimator
selection models will respectively generate the scores that prioritize
the estimators by the predicted overestimation and underestimation
performance. Sover ∈ R𝑚 represents the scores based on overesti-
mation, where𝑚 is the number of base estimators, with a higher
value indicating better overestimation performance.Sunder ∈ R𝑚 is
similar to Sover. 5○The selection loss functions (Lover and Lunder)
of the two models take the scores and labels as input. 6○Then we
respectively select top base estimators with high scores and the
selected estimators are Iover and Iunder. 7○The learned estima-
tor weighter takes the sample data and the estimations of the se-
lected estimators as input and predicts the weight (Λ). 8○- 9○Finally,
we employ a weighted sum on the estimation results of the se-
lected estimators to fuse them into the ultimate NDV estimation
�̂� , 10○deriving fusion-based estimation loss function Lest.
Inference pipeline. 1○- 2○The learned leading estimator selec-
tion models take the sample data as input to generate the scores
of each estimator. 3○Then, we select the top estimators with the
highest scores for overestimation and underestimation, respectively.

overestimated result
underestimated result

(b) select the top 1 estimator

(a) estimations of existing estimators

ground truth
selected estimator
codomain of weighted
sum

0

(c) select the top 2 estimators

0

0

0
(d) select the top 1 over/under estimators

Figure 3: Intuition behind leveraging the properties of over-

estimation and underestimation.

4○Next, we input the sample data and the estimations of the selected
estimator into the learned estimator weighter to obtain the weights.
5○- 6○Finally, the ultimate estimation is fused by a weighted sum
on the estimations of the selected estimators.

3.1.2 Properties of overestimation and underestimation. We illus-
trate the intuition behind our method in leveraging the properties of
overestimation and underestimation in Figure 3. Each circle in the
figure represents the estimation result from a base estimator. The
ground truth, indicated by a vertical bar in the middle, separates
these results into two sections: overestimation and underestimation,
which are marked with two different colors. The performance of
selecting the optimal estimator from existing ones (as shown in Fig-
ure 3b) is challenging and limited by both selection accuracy and the
base estimators. While it is straightforward to ensemble estimators
to alleviate these issues, selecting estimators with the lowest errors
and ensemble them may not bring performance improvement. Fig-
ure 3c illustrates such a scenario where two overestimation results
are selected, and the corresponding codomain cannot cover the
ground truth bar. Therefore, differentiating the results into over-
estimations and underestimations is essential for improving the
performance. Although the estimation errors of the selected results
may be substantial, complementing overestimations and underes-
timations enables their weighted sum to robustly encompass the
ground truth, as shown in Figure 3d. This allows the model to learn
a set of parameters, resulting in the weighted sum of the selected
results performing better than any individual estimator, potentially
even approaching the ground truth.

3.2 Leading Estimator Selection

We first describe the features extracted from the sample data, then
we comprehensively illustrate the ranking paradigm used in esti-
mator selection, and finally, we delineate the construction of the
objective function for this component.

3.2.1 Feature Engineering. Formally, we denote the features ex-
tracted from the sample data as 𝑥 ∈ R𝐻 , where 𝐻 denotes the
number of dimensions in the feature space. Frequency profiles 𝑓
are widely used features, but their sizes varies across different col-
umn test cases. Since a learned model needs a fixed number of
input features, we apply a cut-off to the frequency profile, similar to
previous works [34, 57]. This operation is based on the assumption
that the predictive power of 𝑓𝑖 decreases as 𝑖 increases, an assump-
tion that is widely used in previous works [18, 20, 28, 34, 57]. In
addition, according to Section 2.1, cutting off the frequency profile
will make computing the number of sample data 𝑛 and the NDV of
sample data 𝑑 inapplicable. Therefore, we use 𝑛 and 𝑑 as directly
as features. Furthermore, we include the original column size 𝑁 as
another feature.

Since the length of input features must be a fixed number 𝐻 , if
the size of 𝑓 is smaller than the required length, we pad it with
zeros. Specifically, the input feature is formulated as:

𝑥 = [𝑓1, 𝑓2, · · · , 𝑓𝐻−3, log𝑛, log𝑑, log𝑁] . (6)

We apply the logarithm operation on 𝑛, 𝑑 , and 𝑁 to mitigate the
skewness of input features.

3.2.2 Estimator Ranking. The ranking paradigm has demonstrated
substantial superiority in solving item prioritization tasks [14, 37, 44,
55, 59]. We adapt SOTA ranking techniques in estimator selection,
which encompasses the elaborated construction of ranking labels
and the training of the learned ranker.
Ranking Label Construction. Constructing the ranking label is
a complex task [56] due to the potentially infinite number of label
values, even when the ranking order is fixed. For instance, given
two estimators 𝑒1 and 𝑒2, where 𝑒1 has a lower q-error. We denote
𝑒1 ≻ 𝑒2, indicating that 𝑒1 is better than 𝑒2. Let 𝑦1 and 𝑦2 be the
ranking labels. Any values of 𝑦1 and 𝑦2 that satisfy the condition
𝑦1 > 𝑦2 are eligible to serve as ranking labels, because the ranking
paradigm focuses solely on the relative orders rather than specific
values.

There are no predefined estimator ranking labels available, and
the labels in the estimator selection context require the following
attributes: (1) A higher value of the label reflects the higher prior-
ity, while also indicating a lower q-error in NDV estimation; (2)
The value domain of the label needs to be constrained, as applying
ranking techniques usually involves exponentiation operation on
the label values [37]. Unconstrained values could potentially lead
to computational overflow; (3) The label needs to distinctly differ-
entiate between overestimated and underestimated estimators, as
required by our designed objectives.

To this end, we propose an efficient ranking label construction
strategy. Firstly, we use the ranking position to constrain the value
of labels to be no greater than𝑚. Then, we construct the labels by
reversing the ranking positions based on the lowest overestimated
or underestimated q-error. Finally, we mask the overestimated or

Algorithm 1: Overestimation ranking label construction.

Input: D̂, 𝐷
Output: 𝑦over

1 UnderEstSet←− ∅; 𝑖 ←− 1; D̂max ←− max1≤ 𝑗≤𝑚 D̂𝑗 ;
2 for 𝑖 ←− 1; 𝑖 ≤ 𝑚; 𝑖 ←− 𝑖 + 1 do
3 if D̂𝑖 ≤ 𝐷 then

4 UnderEstSet←− 𝑖 ;
5 D̂𝑖 ←− D̂𝑖 + D̂max;
6 end

7 end

8 for 𝑖 ←− 1; 𝑖 ≤ 𝑚; 𝑖 ←− 𝑖 + 1 do
9 𝑦over

𝑖
←−𝑚 − 𝜋D̂𝑖

;
10 end

11 for 𝑖 in UnderEstSet do
12 𝑦over

𝑖
←− 0; // mask the underestimate estimators

13 end

14 return 𝑦over;

underestimated estimators to differentiate them. Through these
steps, the constructed labels satisfy the required attributes.

To prioritize the estimators with low overestimation q-errors,
the process of constructing ranking labels 𝑦over is shown in Al-
gorithm 1. Specifically, we first record the maximum estimated
result among all base estimators as D̂max. Then, to separate un-
derestimations from overestimations, we add D̂max to the result
of each underestimated estimator to ensure that their estimations
are higher than those of any overestimated estimators. Next, we
obtain the ranking position 𝜋 of each base estimator by sorting
the estimation results, where 𝜋D̂ = argsort(D̂). Specifically, the
argsort operation yields the indices required to sort the data in
ascending order, and 𝜋D̂𝑖

represents the index of D̂𝑖 . In the context
of overestimation, the transformed estimation is considered better
when it is smaller. Therefore, the estimator with better overestima-
tion performance has a higher value of the ranking label 𝑦over

𝑖
by

reversing its ranking position. Finally, we mask the underestimated
estimators by setting their ranking labels as zero to differentiate
them from the overestimated ones.

The process of constructing labels 𝑦𝑢𝑛𝑑𝑒𝑟 is similar to that of
𝑦𝑜𝑣𝑒𝑟 , and we omit it for conciseness.
Train the LearnedRanker.Weuse amulti-layer perceptron (MLP)
as the backbone of our ranking model:S = MLP(𝑥), whereS ∈ R𝑚
represents the ranking scores of the estimators. The higher score
indicates the higher priority of the corresponding estimator. We
adapt the SOTA ranking techniques [14, 44, 55, 59] into estimator
selection to train the ranking models. In short, the learned ranker
can be trained by:

Lrank (S, 𝑦) = −
𝑚∑︁
𝑖=1

2𝑦𝑖 − 1
log2 (1 + 𝜋 (𝑖))

,

𝜋 (𝑖) = 1 +
𝑚∑︁

𝑗, 𝑗≠𝑖

1
1 + 𝑒−𝛼 (S𝑗−S𝑖)

,

(7)

where 𝛼 is the hyperparameter in the training framework, Lrank
is the estimator ranking loss function, and 𝑦 is the ranking label.
The learned ranker can similarly achieve different objectives by
assigning the labels constructed by Algorithm 1.

3.2.3 Leading Estimator Selection. In this subsection, we show the
training objectives of complementary estimator selection of this
component.
Overestimated Estimators Selection. We construct the training
labels 𝑦over according to Algorithm 1, and we use an MLP that
has two hidden layers with 128 and 64 dimensions to compute the
ranking scores Sover. The loss function for overestimated estimator
selection is:

Lover =
1
N

N∑︁
𝑖=1
Lrank (Sover𝑖 , 𝑦over𝑖), (8)

where N is the number of training samples, and Lrank is the loss
function defined in Equation (7).
Underestimated Estimators Selection. Similarly, we use another
MLP with the identical model architecture to compute Sunder and
the training labels 𝑦under. The loss function for underestimated
estimator selection is:

Lunder =
1
N

N∑︁
𝑖=1
Lrank (Sunder𝑖 , 𝑦under𝑖) . (9)

3.3 Estimator Fusion

3.3.1 Feature Engineering. The features described in Section 3.2.1
are also used in this component. Moreover, we incorporate the
estimated results of the chosen base estimators as the additional
features.

Specifically, the leading estimator selection component provides
the priority scoresSover andSunderof the base estimators.We select
𝑘 estimators with the top-𝑘 highest scores for both both overesti-
mated and underestimated estimators. The chosen estimators are
denoted as Iover = argmax𝑘 Sover and Iunder = argmax𝑘 Sunder.
The features are defined as 𝑥 ′ = [𝑥, D̂ |Iover , D̂ |Iunder], 𝑥 ′ ∈ R𝐻+2𝑘 .

3.3.2 Estimator Fusion. We use an MLP to compute the weights
for the chosen base estimators: Λ = MLP(𝑥 ′), where Λ ∈ R2𝑘
is the weight vector concatenated by two 𝑘-dimentional vectors
corresponding to the chosen leading estimators. Λ is not fixed but
depends on sample data and selected estimators. To restrict the
output of estimated NDV, we limit

∑2𝑘
𝑗=1 Λ 𝑗 = 1 and estimate NDV

by exploiting the base estimators:

log �̂� =

𝑘∑︁
𝑗=1
(Λ 𝑗 · log D̂ |Iover

𝑗
+ Λ𝑘+𝑗 · log D̂ |Iunder

𝑗
), (10)

where D̂ |Iover
𝑗

is the estimated NDV of the 𝑗-th chosen overesti-

mated base estimator, and the output estimated NDV �̂� = 𝑒 log �̂� .
The logarithm is applied to limit the estimation of base estimators so
that they do not exceed the range of a 32-bit floating-point number,
thus preventing potential impacts on model training. The learned

model solely generates the weight vector, different from previous
works that directly estimate NDV.

3.3.3 Fusion Component Training. Denote 𝐷𝑖 as the ground truth
NDV of the 𝑖-th training sample, and the learned model can be
trained using:

Lest =
1
N

N∑︁
𝑖=1
(log �̂�𝑖 − log𝐷𝑖)2 + 𝜆 | |𝑊 | |2, (11)

where we apply 𝐿2 regularization on model parameters𝑊 for better
generalization. The regularization parameter 𝜆 is tuned based on
the validation loss.

4 EXPERIMENTS

4.1 Experimental Setup

Dataset Selection. A fundamental test case for evaluating esti-
mators is applying them to an individual data column, where the
underlying data distribution is manifested. Therefore, the diver-
sity of evaluation scenarios hinges on the variety of individual
columns with various data distributions, rather than the quan-
tity of data tuples in the data column. Most traditional statistical
estimators [15, 18–21, 27, 28, 28, 42, 47–52] are tested on a few
synthetic columns that satisfy their heuristics and assumptions.
Recent studies of learned estimators [35, 57] primarily evaluate the
performance on manually crafted standard data distribution (e.g.
Zipfian and Poisson) and a limited number of columns of some
open-source datasets (SSB [43], Campaign [1], NCVR [2], et. al.).
In conclusion, the previous works used limited data distributions
and data columns to evaluate the performance of NDV estimators,
which may lead to insufficient evaluations.

In recent years, the research community has proposed open-
source large-scale tabular datasets [24, 32]. TabLib [24], which
collects 627M individual tables totaling 69 TiB, is the largest one all
over the world. In this paper, we select TabLib sample version [11],
which contains 0.1% of the full version (69 GB), as our dataset for
evaluation. TabLib exhaustively contains tabular data from the real
world (GitHub [6] and Common Crawl [5]) with diverse domains,
which can better reflect the data distribution in practice.
Data Preprocess. TabLib sample version contains 77 parquet files,
we remove three of them (2d7d54b8, 8e1450ee, and dc0e820c) for the
memory issue. Then we divide the remaining 74 files into train, test,
and validation sets to avoid potential data leaks. Each parquet file
contains thousands of tables, where for each column we indepen-
dently sample 1% of data tuples uniformly to construct evaluation
cases. Previous works solely focus on large tables with millions
of rows [34, 57]. We expand the evaluation cases by assessing the
methods on table sizes ranging from tens of thousands to millions
of rows. The statistics of preprocessed data are shown in Table 2,
where “# Columns” represents the number of Train/Validation/Test
cases used for evaluation.
Evaluation Criteria. To comprehensively evaluate the perfor-
mance of NDV estimators, we use mean q-error (as defined in
Equation (4)) and the distribution (50%, 75%, 90%, 95%, and 99%
quantiles) of q-error on a large data volume.

Table 2: Statistics of preprocessed TabLib sample data.

Train Validation Test

Columns 89,283 30,418 25,159

Implementation Details.We implement our model in PyTorch,
and the implementation details are shown as follows: the optimizer
is Adam [33] with an initial learning rate of 0.001, 𝛼 is 1, 𝛽 is 0.5, the
number of input features 𝐻 is 100, the number of selected leading
estimators 𝑘 is 2. The training epoch is 100, we save the model
by 99% quantile of q-error on the validation set and report the
performance on the test set. All the experiments in this paper are
conducted on an NVIDIA A100 GPU.
Baseline Models. In our evaluation, we include statistical estima-
tors, hybrid estimators that integrate statistical ones, and learned
estimators as our baselines.
Statistical estimators (base estimators). There are many statistical
estimators, we select representative ones as our baselines as well
as our base estimators.

• Goodman [27] is the seminal work in NDV estimation, and we
use the expression in Equation (1).

• GEE [20] provides a theoretical lower bound of ratio error and it
uses geometric mean as scale factor: 𝐷GEE =

√︁
𝑁 /𝑛𝑓1 +

∑𝑛
𝑗=2 𝑓𝑗 .

• Error Bound (EB) [21] is proposed to estimate NDV in sampling-
based histogram construction, and𝐷EB =

√︁
𝑁 /𝑛𝑓 +1 +

∑𝑛
𝑗=2 𝑓𝑗 , 𝑓

+
1 =

max(1, 𝑓1).
• Chao [18, 42] assumes the size of 𝐶 is infinity. We use the ex-

pression in Equation (2). If 𝑓2 is zero, we will return 𝑑 .
• Shlosser [48] is based on the assumption that the frequency

profile of sample data is approximately the frequency profile of
the original column. 𝐷Shlosser = 𝑑 +

𝑓1
∑𝑛

𝑖=1 (1−𝑟)𝑖 𝑓𝑖∑𝑛
𝑖=1 𝑖𝑟 (1−𝑟)𝑖−1 𝑓𝑖

.
• ChaoLee [19] adds another estimator in Chao to treat data skew,

we refer to [7] to implement it.
• Jackknife [16, 17] assumes 𝑑𝑛 be the NDV of the sample and

numbers the tuples from 1 to n in the sample data. Denote
𝑑𝑛−1 (𝑘), 1 ≤ 𝑘 ≤ 𝑛, 𝑑𝑛−1 (𝑘) = 𝑑𝑛 − 1 if the attribute value
for tuple 𝑘 is unique; otherwise 𝑑𝑛−1 (𝑘) = 𝑑𝑛 −1. The first-order
Jackknife estimator is: 𝐷Jackknife = 𝑑𝑛 − (𝑛 − 1) (𝑑𝑛−1 − 𝑑𝑛).

• Sichel [49–51] estimator needs to solve non-linear equations, as
shown in Equation (3).

• Bootstrap [52]: 𝐷Boot = 𝑑 +
∑

𝑗 :𝑛 𝑗>0 (1 − 𝑛 𝑗/𝑛)
𝑛 . It may perform

worse when 𝐷 is large and 𝑛 is small because 𝐷Boot ≤ 2𝑑 .
• Horvitz-Thompson (HT) [47] has a sophisticated expression,

it defines ℎ𝑛 (𝑥) = Γ (𝑁−𝑥+1)Γ (𝑁−𝑛+1)
Γ (𝑁−𝑛−𝑥+1)Γ (𝑁+1) , where Γ is the gamma

function, and 𝐷𝐻𝑇 =
∑

𝑗 :𝑛 𝑗>0
1

1−ℎ𝑛 (�̂� 𝑗)
, �̂� 𝑗 = 𝑁 (𝑛 𝑗/𝑛).

• Method of Movement (MoM) [15] has three versions. MoM v1
assumes the frequencies are equal (𝑁1 = 𝑁2 = . . . = 𝑁𝐷)
and an infinite population, it needs to solve the equation: 𝑑 =

𝐷MoM1 (1 − 𝑒−𝑛/𝐷MoM1). MoM v2 assumes the population size is
finite, and the estimator is 𝑑 = 𝐷MoM2 (1−ℎ𝑛 (𝑁 /𝐷MoM2)). MoM
v3 assumes the frequencies are unequal and it has a sophisticated
expression, we refer to [7] to implement it.

• Smoothed Jackknife (SJ) [28]. 𝐷SJ = 𝑑𝑛 − 𝐾 ((𝑑𝑛−1 − 𝑑𝑛)), there
is a extremely sophisticated approximation expression for 𝐾 , we
omit its expression in the paper and refer to [7] to implement it.

Hybird estimators. Existing hybrid estimators are commonly con-
structed by using SJ [28], GEE [20], Shlosser [48] estimators. Specif-
ically, they use 𝜒2

𝑛−1 test [4] to pick estimators. Define

𝑢 =
∑︁

𝑗,𝑛 𝑗>0
(
(𝑛 𝑗 − 𝑛)2

𝑛
), 𝑛 =

𝑛

𝑑
. (12)

• HYBSkew [28] uses SJ estimator if 𝑢 ≤ 𝜒2
𝑛−1,0.975, otherwise it

takes Shlosser estimator.
• HYBGEE [20] uses SJ estimator if 𝑢 ≤ 𝜒2

𝑛−1,0.975, otherwise it
takes GEE estimator.

Learned estimators. In addition, we compare our method with the
open-sourced SOTA learned estimator LS [57]. We consider three
variants of LS for a fair comparison:
• LSgeneral: since LS claimed can directly apply to any data distri-

bution [57], we use its open-source checkpoint as a baseline.
• LSscratch: we train LS from scratch on the same training set as

AdaNDV.
• LSFT: we fine-tune (FT) LSgeneral as described in [57] on the same

training set as AdaNDV.
Besides, we construct two learned estimator baselines as follows:

• Select-Optimal (SO): it selects one optimal base estimator using
an MLP with the same architecture as the estimator selection
model in AdaNDV, designed to accomplish the objective as
Hypo-optimal.

• Learnable Ensemble (LE): it integrates the results of all fourteen
base estimators by a learnable weighted sum, where the number
of parameters is equal to the number of base estimators.

4.2 Statistical Estimators Analysis

In this section, we present a detailed analysis of the performance of
statistical and hybrid estimators in large-scale real-world scenarios.
Overall Performance. The performance is shown in Table 3. Ac-
cording to the results, we can draw the following conclusions:
• There is no single traditional estimator that always outperforms

the other ones across all the evaluated metrics.
• The majority of traditional estimators exhibit subpar perfor-

mance across most metrics. In the most adverse scenarios, the
q-error of the Goodman estimator even surpasses the upper limit
that a 32-bit floating-point value can represent due to factorial
operations in Equation (1).

• Using a comprehensive assessment of the performance of NDV
estimators is desired. For example, although the Shlosser esti-
mator has a mean q-error that is higher but close to that of EB,
its 50% quantile of q-error is considerably lower, while its 99%
quantile of q-error is significantly higher. A single metric can
not reflect the performance of an estimator.

• HYBSkew does not outperform Shlosser, and HYBGEE does not
surpass GEE. On the one hand, they rarely select SJ, indicating
hybrid estimators may mitigate poor results to some extent. On
the other hand, the performance of traditional hybrid estimators
is limited by the selected single estimator.

Table 3: Mean and quantiles of q-error of baselines and our

method, where∞ indicates that the number exceeds the rep-

resentation limits of a 32-bit floating-point type. Each best-

performing metric is emphasized in boldface.

Estimator Mean 50% 75% 90% 95% 99%

Goodman ∞ 4.14 37.91 100.78 1.11e11 ∞
GEE 3.71 1.97 3.86 9.91 10.10 11.70
EB 3.98 2.62 6.00 9.98 10.12 11.00

Chao 21.98 1.85 6.50 99.99 100.04 100.19
Shlosser 4.25 1.80 4.53 10.41 15.14 25.14
ChaoLee 23.28 4.35 29.39 96.00 99.36 100.51
Jackknife 12.60 2.80 16.24 49.04 50.38 51.71
Sichel 152.93 2.49 99.70 365.10 1.03e3 2.20e3
MoM v1 2.51e4 2.00 6.60 22.70 66.51 1.11e6
MoM v2 8.60 3.14 9.96 18.84 30.61 86.09
MoM v3 4.29e3 5.95 61.92 818.18 3.30e3 4.30e4
Bootstrap 70.01 10.99 47.91 95.42 224.09 1.25e3

HT 2.83e3 41.56 354.42 5.07e3 1.03e4 4.41e5
SJ 231.67 2.17 8.12 34.03 90.25 1.81e3

HYBSkew 4.25 1.80 4.53 10.41 15.14 25.14
HYBGEE 3.71 1.97 3.86 9.91 10.10 11.70

LSgeneral 2.24 1.72 2.28 3.20 4.11 10.46
LSscratch 1.91 1.36 1.80 2.57 3.53 10.80
LSFT 1.96 1.39 1.86 2.64 3.63 11.44
SO ∞ 1.29 2.08 3.29 4.42 13.03
LE 2.30 1.71 2.22 3.44 4.63 11.88

AdaNDV 1.62 1.22 1.60 2.34 3.24 6.79

Intrinsic Weaknesses. The intrinsic weaknesses of statistical esti-
mators are evident and have been discussed in previous works [34,
57]: the assumptions and conditions of traditional estimators are
infrequently satisfied in practice.

We expand the number of evaluation cases by several orders
of magnitude to provide a more comprehensive assessment that
has not been investigated before, and we can conclude that the
weaknesses exposed by prior studies remain valid.
Undiscovered Strengths. However, we argue that the strengths
of statistical estimators are significantly eclipsed by their weak-
nesses. Although real-world data distributions often fail to meet
their presupposed conditions, it is possible to identify estimators
that deliver the estimated result with an acceptable level of q-error.
Our argument is supported by the Hypo-optimal estimator shown
in Table 1. Meanwhile, it suggests that accurately selecting appropri-
ate estimators could significantly reduce q-error.

4.3 Results of Learned Estimators

Effectiveness. The overall performance of learned estimators is
shown in Table 3, and we observe the following findings:

• Performance of the proposed learned estimator. AdaNDV signifi-
cantly outperforms all estimators across all the metrics. These
results substantially demonstrate the superiority of AdaNDV.

Figure 4: Error distribution of learned estimators on the test

set. The violin plot is in blue. The boxplot is in black, the gray

box contains 50% of data points, and the white line in the

gray box represents the median.We exclude the SO estimator

due to its extremely large mean error.

• Performance of SOTA learned estimators. LSgeneral consistently
outperforms the statistical estimators across all the metrics,
which exhibits the advantages of learned estimators that can
adapt to data shifting over statistical estimators. In addition,
LSscratch and LSFT have better performance compared to LSgeneral
in general. However, by looking at the different quantiles of q-
error, training or fine-tuning may decline the robustness, where
they perform worse than LSgeneral for 99% quantile of q-error.

• Performance of constructed learned estimators. The performance
of the SO and LE estimators reveals the necessity of investigating
the historically overlooked issues in NDV estimation. Firstly, se-
lecting one optimal estimator by a learned model can outperform
individual estimators in most scenarios, but it is challenging to
achieve high accuracy, which can lead to worse cases. Besides,
the LE estimator outperforms individual statistical ones, show-
casing the potential of estimator fusion.

• Error distribution discussion. In Table 3, we also observe that
AdaNDV exhibits a more robust error distribution: about 90% of
the test cases show a q-error below 2.30, and approximately 99%
of test cases exhibit the q-error do not exceed 7. Moreover, we de-
pict the boxplot [3] and violin plot [12] of q-error distributions of
learned estimators in Figure 4, where we omit the SO estimator
for its overflow issue. From the figure, we observe that the q-
error distribution for the AdaNDV shows a higher concentration
around values closer to the minimum error, indicating its advan-
tages. Besides, the maximal q-error of AdaNDV is much smaller
than other learned estimators, representing better performance
in the worst cases.

Efficiency. The efficiency of an estimator determines its practi-
cality. Thus we also evaluate the efficiency of AdaNDV and the
learned estimators in terms of both time and space consumption.
The computing overhead of AdaNDV involves the neural networks
and the selected base estimators. Since some base estimators in-
volve solving non-linear equations, it is not easy to provide a rigor-
ous time complexity analysis. Therefore, for simplicity, we record
the end-to-end latency of the training and testing stages for them.
Specifically, in the training stage, we record the execution time of
the base estimators as well as the time reaching convergence for
the learned estimators. In the inference stage, we capture the time
required for processing all test cases. In addition, we compare the
learnable parameters between the learned estimators to show their
space efficiency. We exclude LSgeneral in this comparison since it is

Table 4: Efficiency comparison of the methods.

LSscratch LSFT AdaNDV SO LE

Train (s) 929 2,963 712 1,261 1,337
Inference (s) 25.42 25.42 51.44 32.79 84.85
Params 62,435 62,435 55,328 22,294 14

pre-trained and has the same inference efficiency and parameters as
its variants. The time and space consumptions are shown in Table
4, and we derive the following conclusions.
• Training efficiency of learned estimators. We observe that LSFT

is the most time-consuming method in that it requires about
three times of epochs than LSscratch to converge. One possible
reason may be that adapting the general model to the training
domain requires more time than learning from scratch since the
fine-tuning process may need to maintain the features learned
in the pre-training stage. AdaNDV requires minimal time for
convergence. The SO and LE estimators have longer training
time than AdaNDV and LSscratch, indicating their objectives are
more difficult to converge.

• Inference efficiency. The inference overhead of baseline learned
estimators solely involves a neural network model inference
and the total time on the test set (25, 159 samples) is 25.42s, the
average inference time of a test case is about 1ms. In contrast,
AdaNDV consists of three neural models and they need 27.46s
to finish the inference on the test set. Besides, AdaNDV addi-
tionally requires the base estimator computation which needs
23.97s. In total, AdaNDV spends 51.44s to finish the inference
on all the test samples with an average estimation time of about
2ms. The elaborated components bring performance improve-
ment and efficiency decline in AdaNDV. For the constructed
estimators, the SO estimator requires a selected base estimator
employment for each test case, resulting in a longer inference
time compared to LS models. LE needs the estimation results of
all base estimators, leading to the longest inference time among
the learned estimators.

• Space efficiency comparison.We observe that the variants of LS
possess approximately 12.85% more parameters compared to
AdaNDV. Its advantage can likely be attributed to the elabo-
rated integration of base estimators. This strategic utilization
enhances the performance of learned estimator AdaNDV with
less representation ability (number of learnable parameters). For
the constructed estimators, the SO estimator has fewer parame-
ters than AdaNDV and LS models, since its architecture is the
same as a component in AdaNDV. LE solely has 14 learnable
parameters, making it the most lightweight among the learned
estimators, which may indicate the potential for lightweight
optimization in AdaNDV.

4.4 Ablation Study

The outstanding performance of AdaNDV mainly stems from the
effective collaboration between its leading estimator selection and
the fusion-based estimation. To investigate the contributions of each
module, we develop several variants of AdaNDV. The symbol “w/o”
indicates removing the component or strategy from our method.

Table 5: Ablation study, where “w/o” indicates removing a

component from AdaNDV.

Estimator Mean 50% 75% 90% 95% 99%

AdaNDV 1.62 1.22 1.60 2.34 3.24 6.79

w/o select 2.30 1.71 2.22 3.44 4.63 11.88
w/o fusion 2.42 1.35 2.01 3.31 4.75 19.30

w/o log 2.72e7 41.54 671.06 2.67e3 5.87e4 1.00e10
w/o base 1.67 1.27 1.66 2.39 3.34 7.42
w/o over 2.20 1.37 1.92 3.10 4.27 11.97
w/o under 2.49 1.82 2.88 5.50 6.00 11.00
w/o comp 2.05 1.26 1.76 2.68 3.81 11.68

Primary Components. We individually eliminate each of the
two principal constituents within AdaNDV. Firstly, we drop the
leading estimator selection component to deliberately make the
model use all base estimators to estimate NDV, the variant is named
“w/o select”. We then remove the estimator fusion component to
select a single estimator by the ranking paradigm from the base
estimators to present NDV, the variant is named “w/o fusion”. The
performances of the two variants are shown in Table 5. We can
observe that the performance of AdaNDV significantly declines
across all the metrics if we remove one of the two components.
Based on the observation, we can derive the following conclusions.

• Directly estimating NDV by fusing all base estimators may make
the task difficult because it has to leverage poor-performing
estimators. Besides, the performance of “w/o select” surpasses
that of LE, highlighting the advantages of adaptively adjusting
the weights of fused estimators for different test cases.

• The performance of “w/o fusion” shows that selecting a single
estimator with high accuracy is challenging because of the rep-
resentation ability (sparse features and the MLP architecture)
of the model. On the contrary, it performs better than the SO
estimator in most metrics and can alleviate the ∞ of mean q-
error. It demonstrates the effectiveness of the ranking paradigm
(“w/o fusion”) over the classification paradigm (SO), and further
investigation will be conducted in Section 4.6.

• Each component has a significant contribution to AdaNDV, and
the combination of two components leads to the superiority of
AdaNDV.

Detailed Strategies. We further study the other strategies uti-
lized in AdaNDV and the performance of dropping each strategy is
shown in Table 5. Firstly, we remove the log scale training technique
by transforming Equation (10) to �̂� =

∏𝑘
𝑗=1 (D̂ |

Λ 𝑗

Iover
𝑗

· D̂ |Λ𝑘+𝑗
Iunder
𝑗

), the

variant is denoted as “w/o log”. The performance of “w/o log” sig-
nificantly declined, which indicates the effectiveness of logarithm
operation.

In the estimator fusion component, we add the estimated NDV
of the selected leading estimators as features. We remove the fea-
tures of estimated results, and the variant is named “w/o base”. Its
performance slightly declined on all metrics but performs better
than all baselines, which indicates that taking the estimated results

as input features may make the model aware of the input value do-
main and then improve the weights allocation to get more accurate
estimations.

Finally, we study whether discerning overestimation and under-
estimation estimators work. We remove the two kinds of leading
estimators and name the two variants as “w/o over” and “w/o un-

der”, respectively. We can observe the two variants significantly
decrease on all metrics and they cannot beat baseline learned esti-
mators. The performance illustrates that individually utilizing the
two kinds of leading estimators can not obtain satisfactory results
but the combination of them can bring a significant approximation
to the ground truth NDV. In addition, we construct a new variant
“w/o comp” that directly selects 2𝑘 estimators without deliberately
utilizing the overestimation-underestimation complementary error
correction strategy. It outperforms all variants in most metrics but
is consistently worse than AdaNDV. On the one hand, it illustrates
the benefit of our proposed complementary error correction strat-
egy. On the other hand, although not intentionally distinguished, it
is rare for the selected estimators to be exclusively overestimated
or underestimated. This further demonstrates the effectiveness of
our strategy combined with the experimental conclusions of “w/o
over” and “w/o under”.

4.5 Impact of Hyperparameters

There are three hyperparameters in AdaNDV: 𝛼, 𝛽, 𝑘 , and we inves-
tigate the sensitivity of the model. We demonstrate the performance
of mean and 99% percentile of q-error in Figure 5 to show the impact
of hyperparameters.
Effect of 𝛼 in the Ranking Model. We can observe different 𝛼
values lead to some fluctuations in the performance, but AdaNDV
is not sensitive to different values of 𝛼 . We set 𝛼 to 1 because it
achieves the best performance in most metrics. Extensively dis-
cussing the effect of this knob is out of the scope of this paper, refer
to [14, 55] for more details.
Effect of Multi-objective Optimization Knob 𝛽. As shown in
Figure 5, we observe that the performance in mean q-error remains
unchanged across different values of the knob 𝛽 . However, there is
a notable difference in 99% q-error. For each experimented value
of 𝛽 , AdaNDV exhibits relatively stable performance. The knob
𝛽 balances the estimator ranking and NDV prediction tasks, we
set 𝛽 as 0.5 in this paper because it achieves better results in most
metrics than in other settings.
The Number of Leading Estimators 𝑘 . The number of selected
leading estimators directly affects the input of the estimation fu-
sion component. With the variation of 𝑘 , the performance of the
model does not improve beyond that achieved with 𝑘 = 2 on the
mean and the 99% percentile of q-error. This finding illustrates that
selecting more estimators does not consistently benefit the fusion
component, as demonstrated in the analysis of the LE estimator
and the variant of AdaNDV “w/o select”. Additionally, increasing
𝑘 involves incorporating more base estimators during the infer-
ence stage, which introduces additional computational overhead,
as shown in Table 4. Considering both effectiveness and efficiency,
we set 𝑘 as 2.

Table 6: Performance comparison of different variants of

AdaNDV.

Mean 50% 75% 90% 99%

AdaNDV 1.62 1.22 1.60 2.34 6.79
AdaNDV(C) 1.86 1.34 1.98 3.04 8.42

AdaNDV(base-EB) 1.64 1.24 1.62 2.39 7.11
AdaNDV(base+LSgeneral) 1.62 1.21 1.58 2.33 7.18

AdaNDV(Hypo) 1.18 1.10 1.24 1.43 2.20

4.6 Flexibility Discussion

Selected Estimator Discussion. Since we leverage the property
of overestimation and underestimation, we demonstrate the overes-
timation and underestimation ratios of base estimators in Figure 6a.
We count the estimators selected by the overestimated and underes-
timated selection models of AdaNDV, and the proportion of each
estimator is shown in Figure 6b. We can observe the following
findings based on the results.

• Base estimators can hardly derive the ground truth, as they
always either overestimate or underestimate. Besides, no estima-
tors can consistently overestimate or underestimate, but certain
estimators tend to underestimate on the dataset.

• EB is the most frequently selected by both models, ChaoLee
has not been selected by either model, and some estimators are
exclusively selected by a single model. It suggests that most esti-
mators are beneficial and the overestimation-underestimation
complementary perspective is utility.

• Figure 1 illustrates that all base estimators can achieve the lowest
q-error in certain scenarios compared to others, but some are
selected infrequently. This highlights that collecting the set of
base estimators may be an open research question.

Precisions of Estimator Selection. We have constructed the SO
estimator as our baseline by categorizing the estimators into two
classes for training: the optimal overestimated or underestimated
estimator and otherwise. To further investigate the differences be-
tween the ranking and classification paradigms, we develop another
variant of AdaNDV by transforming the SO estimator as the esti-
mator selection component in AdaNDV, and the method is named
AdaNDV(C). The performance is shown in Table 6, and we can
derive the following conclusion. On the one hand, AdaNDV(C) con-
sistently outperforms all baseline estimators, demonstrating the
necessity of treating the selection dilemma problem. On the other
hand, AdaNDV surpasses AdaNDV(C) on all metrics. The two vari-
ants have identical estimator fusion components, indicating that
selected estimators directly affect the ultimate estimations.

We use the metric Precision@K (P@K) to evaluate the accuracy
of estimator selection, representing the partition of the optimal es-
timator(s) amongst the top-K estimators, and the results are shown
in Figure 7a. We can observe the model trained in the ranking
paradigm exhibits substantially higher P@1 and P@2 than that
trained in the classification paradigm. The sensitive analysis results
in Figure 5 show that the ultimate performance is closely related
to the top estimators and we set 𝑘 as 2 for AdaNDV, so P@1 and

Figure 5: Performance on mean and 99% percentile of q-error of AdaNDV with different hyperparameters.

(a) Performance of base estima-

tors.

(b) Proportion of selected estima-

tors.

Figure 6: Illustration of overestimation and underestimation

properties.

P@2 of leading estimator selection directly affect the performance
of our exploitation.
Selected Estimators for Fusion.We summarize the fusion sce-
narios of over/under estimation properties of the 2𝑘 (𝑘 = 2) selected
estimators in Figure 7b. The term “over and under” indicates that
both overestimated and underestimated results exist among the 2𝑘
estimators, meaning their weighted sum can encompass the ground
truth. Conversely, “only over” and “only under” refer to the selected
estimators that exhibit only overestimation or underestimation,
respectively. In most test cases, AdaNDV chose both overestimated
and underestimated results, leveraging the properties of overestima-
tion and underestimation to reduce errors in the fusion process. In
addition, the P@2 for estimator selection is 71%, as shown in Figure
7a, indicating that the selected overestimating and underestimating
estimators are also among the top estimators. This demonstrates
the effectiveness of the top-𝑘 selection strategy of AdaNDV.
Adaptivity of Base Estimators. AdaNDV contains fourteen tra-
ditional base estimators and it is adaptive to add or remove base
estimators. In addition, our method is available for learned esti-
mators. To show the flexibility of base estimators in AdaNDV,
we respectively remove the EB estimator and add the LSgeneral
estimator in AdaNDV. The two variants are respectively named
AdaNDV(base-EB) and AdaNDV(base+LSgeneral), and their per-
formance is demonstrated in Table 6. We can derive the follow-
ing conclusions based on the results: (1) AdaNDV(base-EB) and
AdaNDV(base+LSgeneral) consistently outperform the individual
estimators within their base estimator sets, which indicates the
effectiveness of our method remains in changing the base estima-
tors. (2) Removing EB results in a consistent performance decline,
indicating that estimators that are frequently selected, such as EB,
play a crucial role in maintaining the overall effectiveness of the
model. Adding LSgeneral will not consistently improve the perfor-
mance: some metrics have decreased, while others have increased.
The possible reason is that the leading estimator is relative, based

(a) Selection precisions. (b) Type of selected estimators.

Figure 7: Analysis of estimator selection.

on the current set of base estimators. Changing the base estimators
will affect estimator selection.

Figure 7a has shown that accurately identifying the optimal
base estimator from the set of base estimators is a challenging task.
In the subsequent study, we explore the potential impact on our
estimation performance by considering the hypothetical scenario
in which this challenge is addressed.
Upper Bound of Estimator Selection. To further investigate the
upper bound of the estimator selection component, we suppose we
can exploit the optimal estimators, where P@1 is 100%. This variant
of the model is denoted as AdaNDV(Hypo), and its performance
is shown in Table 6. The results can derive the following findings:
(1) If we can accurately select the optimal estimator with the low-
est overestimated and underestimated q-error, the performance
of AdaNDV will significantly improve. It shows the promising
performance upper bound of our AdaNDV framework. (2) Com-
pared to the Hypo-optimal estimator in Table 1, the performance of
AdaNDV(Hypo) is better in most metrics except for 50% quantile
q-error. It further demonstrates the effectiveness of AdaNDV and
indicates that our proposed complementary estimator exploitation
strategy is beneficial.

The P@1 of AdaNDV stands at 53%, indicating that there is
significant scope for enhancement within our proposed method. It
is feasible to explore the estimator selection methods beyond the
classification and ranking paradigms in the future.

4.7 Further Evaluation

In this section, we show the performance of our method under
more evaluation scenarios.
Performance on Artificial Distributions. AdaNDV is trained
and evaluated on the data distributions from the real world, as illus-
trated in Section 4.1. However, most previous works are evaluated
on artificial data distributions, so it is not clear will baseline learned
methods outperform AdaNDV with artificial data distribution. We
conduct experiments on Zipfian distribution with skew factors (𝑠)

Table 7: Q-error of learned estimators when sampling 1% data

from Zipfian distribution with skew factors (𝑠) of {1.2, 1.5,

2.0} with column size (𝑁) of 1e5 and 1e6.

𝑁 1e5 1e6
𝑠 1.2 1.5 2.0 1.2 1.5 2.0

LSgeneral 5.14 2.93 2.47 3.76 5.94 2.5
LSscratch 1.27 1.47 1.36 1.53 2.67 1.06

LSFT 1.62 1.56 1.28 1.23 2.93 1.15
AdaNDV 1.77 1.20 2.36 1.13 5.86 1.75

1.2, 1.5, and 2.0, consistent with previous work [35]. We freeze the
parameters of LSscratch, LSFT, and AdaNDV trained on the TabLib
training set, and evaluate them when sampling 1% of data from
Zipfian distributions with data size of 1e5 and 1e6. The results are
shown in Table 7 and we can draw the following conclusions. No
single estimator achieves optimal results under the Zipfian dis-
tributions with different skew factors and AdaNDV consistently
beats LSgeneral, demonstrating that our method does not fail on
standard artificial distributions. Besides, LSgeneral is pre-trained on
an artificial dataset containing 7.2×105 data points [57], in which
the original columns follow specific data distributions, but it pro-
cesses the worst performance in each metric. This demonstrates
the effectiveness of training models on real-world data.
Performance under Different Sampling Rates. We depict the
performance of 75% quantile q-error of AdaNDV, base estimators,
and the representative learned baseline LSgeneral under different
sampling rates in Figure 8. AdaNDV shows consistent performance
improvement with increasing sample rates, while some base esti-
mators decline in performance, possibly due to practical scenarios
not aligning with their assumptions. Besides, the advantages of
AdaNDV persist across different sample rates, demonstrating that
it is not sensitive to the variations of base estimators.

5 RELATEDWORKS

5.1 Sketch-based NDV Estimation

Sketch-based NDV estimation [25, 26, 31] represents an orthogo-
nal approach to sampling-based NDV estimation. This line of re-
search requires scanning all the data to maintain a memory-efficient
sketch for NDV estimation, which may bring an unaffordable over-
head [35]. Furthermore, real-world databases may have data access
restrictions, which makes sketch-based NDV estimation not appli-
cable in many applications.

5.2 Sampling-based NDV Estimation

Traditional NDV Estimators. Traditional methods explore statis-
tical techniques to summarize heuristic rules to estimate NDV and
they have been studied for over seven decades in Biology [15, 53, 54],
Statistics [18, 27], Networks [23, 40], and Databases [8–10]. Rep-
resentative traditional estimators make different assumptions, for
example, they assume infinity population size [15], certain data dis-
tribution [15, 39], and data skewness [20, 28]. Based on the assump-
tions, numerous estimators have been proposed to utilize the fre-
quency profile of sample data to build linear polinomials [20, 21, 27],
non-linear polynomials [16–19, 42, 47, 48], and solving non-linear

Figure 8: Performance under different sampling rates.

equations [15, 28, 49–52] to estimate NDV, which have been inten-
sively discussed in Section 4.1. In addition, some works focused on
the relation between the sampling size and the errors [22, 53, 58].

Since representative traditional estimators are based on different
heuristics, so it is difficult for them to adapt to distribution shifting.
Learned NDV Estimators. The introduction of ML techniques for
NDV estimation has recently emerged. Wu et al. [57] are the first to
leverage ML models as a Learned Statistician (LS) for NDV estima-
tion. They improve profile maximum likelihood [13, 41, 45] methods
and use neural networks to take data profiles of the sampled data
as inputs to estimate NDV. Li et al. [34] introduced polynomial
approximation techniques [30, 58] to learn the parameters of linear
polynomials of frequency profile to estimate NDV.

5.3 Method Selection in Databases

Selecting an optimal model from a fixed model set, as well as the
ensembling multiple models, for specific database task scenarios,
has emerged and garnered significant attention in recent years.
Examples include identifying the proper learned cardinality estima-
tion model for different datasets [60], allocating a suitable budget
for each data sampler [46], and choosing the optimal knob tun-
ing optimizer for each iteration [61]. However, few studies have
attempted to investigate how to select or ensemble existing NDV
estimators to acquire better results.

6 CONCLUSION AND FUTUREWORK

In this paper, we propose AdaNDV to address the historically ne-
glected selection dilemma and underexploitation issue of NDV esti-
mators. We propose a complementary perspective of overestimated
and underestimated estimators for estimation error correction. Be-
sides, we propose fusing the estimations of the selected estimators
to improve the estimation precision through a learned weighted
sum, rather than directly estimating NDV. Extensive experiments
on a large-scale real-life dataset exhibit the superior performance
of our method.

We reveal that using existing estimators can bring promising
results, however, the representation ability and the implementa-
tion paradigm of the estimator selection and fusion may limit the
estimator selection precisions. In the future, we plan to develop
more powerful feature extraction methods and explore more bene-
ficial model architectures. Moreover, improving the time and space
efficiency is another important direction for future work.

REFERENCES

[1] 2020. Campaign finance data. https://www.fec.gov/data/
[2] 2020. Voter Registration Statistics. https://www.ncsbe.gov/results-data/

voterregistration-data
[3] 2024. Box plot. https://en.wikipedia.org/wiki/Box_plot
[4] 2024. Chi-squared test. https://en.wikipedia.org/wiki/Chi-squared_test
[5] 2024. Commoncrawl. https://commoncrawl.org/
[6] 2024. GitHub. https://github.com/
[7] 2024. Pydistinct - Population Distinct Value Estimators. https://pydistinct.

readthedocs.io/
[8] 2024. Source Code of MySQL. https://github.com/mysql/mysql-server/blob/

824e2b4064053f7daf17d7f3f84b7a3ed92e5fb4/sql/join_optimizer/cost_model.cc
[9] 2024. Source Code of PostgreSQL. https://github.com/postgres/postgres/blob/

master/src/backend/optimizer/plan/analyzejoins.c
[10] 2024. Source Code of Spark. https://github.com/apache/spark/blob/

master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/
statsEstimation/JoinEstimation.scala

[11] 2024. tablib-v1-sample dataset. https://huggingface.co/datasets/
approximatelabs/tablib-v1-sample

[12] 2024. Violin plot. https://en.wikipedia.org/wiki/Violin_plot
[13] Jayadev Acharya, Hirakendu Das, Alon Orlitsky, and Ananda Theertha Suresh.

2017. A unified maximum likelihood approach for estimating symmetric proper-
ties of discrete distributions. In International Conference on Machine Learning.
PMLR, 11–21.

[14] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork. 2019.
Revisiting approximate metric optimization in the age of deep neural networks.
In Proceedings of the 42nd international ACM SIGIR conference on research and
development in information retrieval. 1241–1244.

[15] John Bunge and Michael Fitzpatrick. 1993. Estimating the number of species: a
review. Journal of the American statistical Association 88, 421 (1993), 364–373.

[16] Kenneth P Burnham and Walter Scott Overton. 1978. Estimation of the size of a
closed population when capture probabilities vary among animals. Biometrika
65, 3 (1978), 625–633.

[17] Kenneth P Burnham andW Scott Overton. 1979. Robust estimation of population
size when capture probabilities vary among animals. Ecology 60, 5 (1979), 927–
936.

[18] Anne Chao. 1984. Nonparametric estimation of the number of classes in a
population. Scandinavian Journal of statistics (1984), 265–270.

[19] Anne Chao and Shen-Ming Lee. 1992. Estimating the number of classes via
sample coverage. Journal of the American statistical Association 87, 417 (1992),
210–217.

[20] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.
Towards estimation error guarantees for distinct values. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 268–279.

[21] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1998. Random sam-
pling for histogram construction: How much is enough? ACM SIGMOD Record
27, 2 (1998), 436–447.

[22] Eli Chien, Olgica Milenkovic, and Angelia Nedich. 2021. Support estimation
with sampling artifacts and errors. In 2021 IEEE International Symposium on
Information Theory (ISIT). IEEE, 244–249.

[23] Reuven Cohen and Yuval Nezri. 2019. Cardinality estimation in a virtualized
network device using online machine learning. IEEE/ACM Transactions on
Networking 27, 5 (2019), 2098–2110.

[24] Gus Eggert, Kevin Huo, Mike Biven, and Justin Waugh. 2023. TabLib: A Dataset
of 627M Tables with Context. arXiv:2310.07875 [cs.CL]

[25] Otmar Ertl. 2024. UltraLogLog: A Practical and More Space-Efficient Alternative
to HyperLogLog for Approximate Distinct Counting. Proceedings of the VLDB
Endowment 17, 7 (2024), 1655–1668.

[26] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-
loglog: the analysis of a near-optimal cardinality estimation algorithm. Discrete
mathematics & theoretical computer science Proceedings (2007).

[27] Leo A Goodman. 1949. On the estimation of the number of classes in a population.
The Annals of Mathematical Statistics 20, 4 (1949), 572–579.

[28] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Lynne Stokes. 1995. Sampling-
based estimation of the number of distinct values of an attribute. In VLDB, Vol. 95.
311–322.

[29] Yuxing Han, Haoyu Wang, Lixiang Chen, Yifeng Dong, Xing Chen, Benquan Yu,
Chengcheng Yang, and Weining Qian. 2024. ByteCard: Enhancing Data Ware-
housing with Learned Cardinality Estimation. arXiv preprint arXiv:2403.16110
(2024).

[30] Yi Hao and Alon Orlitsky. 2019. Unified sample-optimal property estimation in
near-linear time. Advances in Neural Information Processing Systems 32 (2019).

[31] Hazar Harmouch and Felix Naumann. 2017. Cardinality estimation: An experi-
mental survey. Proceedings of the VLDB Endowment 11, 4 (2017), 499–512.

[32] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. Gittables: A large-
scale corpus of relational tables. Proceedings of the ACM on Management of Data

1, 1 (2023), 1–17.
[33] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[34] Jiajun Li, Runlin Lei, Sibo Wang, Zhewei Wei, and Bolin Ding. 2024. Learning-
based Property Estimation with Polynomials. Proceedings of the ACM on Man-
agement of Data 2, 3 (2024), 1–27.

[35] Jiajun Li, Zhewei Wei, Bolin Ding, Xiening Dai, Lu Lu, and Jingren Zhou. 2022.
Sampling-based estimation of the number of distinct values in distributed en-
vironment. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 893–903.

[36] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.
ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on
Dynamic Workloads. Proceedings of the VLDB Endowment 17, 2 (2023), 197–210.

[37] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[38] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad
plans by bounding the impact of cardinality estimation errors. Proceedings of the
VLDB Endowment 2, 1 (2009), 982–993.

[39] Rajeev Motwani and Sergei Vassilvitskii. 2006. Distinct values estimators for
power law distributions. In 2006 Proceedings of the Third Workshop on Analytic
Algorithmics and Combinatorics (ANALCO). SIAM, 230–237.

[40] Suman Nath, Phillip B Gibbons, Srinivasan Seshan, and Zachary Anderson. 2008.
Synopsis diffusion for robust aggregation in sensor networks. ACM Transactions
on Sensor Networks (TOSN) 4, 2 (2008), 1–40.

[41] Alon Orlitsky, Narayana P Santhanam, Krishnamurthy Viswanathan, and Junan
Zhang. 2004. On modeling profiles instead of values. In Proceedings of the 20th
conference on Uncertainty in artificial intelligence. 426–435.

[42] Gultekin Ozsoyoglu, Kaizheng Du, A Tjahjana, W-C Hou, and DY Rowland.
1991. On estimating COUNT, SUM, and AVERAGE relational algebra queries.
In Database and Expert Systems Applications: Proceedings of the International
Conference in Berlin, Federal Republic of Germany, 1991. Springer, 406–412.

[43] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The star schema benchmark and augmented fact table indexing. In Performance
Evaluation and Benchmarking: First TPC Technology Conference, TPCTC 2009,
Lyon, France, August 24-28, 2009, Revised Selected Papers 1. Springer, 237–252.

[44] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2019. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Anchorage, AK). 2970–2978.

[45] Dmitri S Pavlichin, Jiantao Jiao, and TsachyWeissman. 2019. Approximate profile
maximum likelihood. Journal of Machine Learning Research 20, 122 (2019), 1–55.

[46] Jinglin Peng, Bolin Ding, Jiannan Wang, Kai Zeng, and Jingren Zhou. 2022. One
Size Does Not Fit All: A Bandit-Based Sampler Combination Framework with
Theoretical Guarantees. In Proceedings of the 2022 International Conference on
Management of Data. ACM, Philadelphia PA USA, 531–544. https://doi.org/10.
1145/3514221.3517900

[47] Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. 1992. Model Assisted
Survey Sampling. Springer Series in Statistics (1992).

[48] A Shlosser. 1981. On estimation of the size of the dictionary of a long text on
the basis of a sample. Engineering Cybernetics 19, 1 (1981), 97–102.

[49] HS Sichel. 1986. Parameter estimation for a word frequency distribution based
on occupancy theory. Communications in Statistics-Theory and Methods 15, 3
(1986), 935–949.

[50] Herbert S Sichel. 1986. Word frequency distributions and type-token character-
istics. Math. Scientist 11 (1986), 45–72.

[51] HERBERT S Sichel. 1992. Anatomy of the generalized inverse Gaussian-Poisson
distribution with special applications to bibliometric studies. Information Pro-
cessing & Management 28, 1 (1992), 5–17.

[52] Eric P Smith and Gerald van Belle. 1984. Nonparametric estimation of species
richness. Biometrics (1984), 119–129.

[53] Gregory Valiant and Paul Valiant. 2017. Estimating the unseen: improved estima-
tors for entropy and other properties. Journal of the ACM (JACM) 64, 6 (2017),
1–41.

[54] Paul Valiant and Gregory Valiant. 2013. Estimating the Unseen: Improved Estima-
tors for Entropy and other Properties. Advances in Neural Information Processing
Systems 26 (2013).

[55] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.
2018. The lambdaloss framework for ranking metric optimization. In Proceed-
ings of the 27th ACM international conference on information and knowledge
management. 1313–1322.

[56] YiningWang, LiweiWang, Yuanzhi Li, Di He, and Tie-Yan Liu. 2013. A theoretical
analysis of NDCG type rankingmeasures. In Conference on learning theory. PMLR,
25–54.

[57] RenzhiWu, Bolin Ding, Xu Chu, ZheweiWei, Xiening Dai, Tao Guan, and Jingren
Zhou. 2021. Learning to Be a Statistician: Learned Estimator for Number of
Distinct Values. Proc. VLDB Endow. 15, 2 (oct 2021), 272–284. https://doi.org/10.

https://www.fec.gov/data/
https://www.ncsbe.gov/results-data/voterregistration-data
https://www.ncsbe.gov/results-data/voterregistration-data
https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Chi-squared_test
https://commoncrawl.org/
https://github.com/
https://pydistinct.readthedocs.io/
https://pydistinct.readthedocs.io/
https://github.com/mysql/mysql-server/blob/824e2b4064053f7daf17d7f3f84b7a3ed92e5fb4/sql/join_optimizer/cost_model.cc
https://github.com/mysql/mysql-server/blob/824e2b4064053f7daf17d7f3f84b7a3ed92e5fb4/sql/join_optimizer/cost_model.cc
https://github.com/postgres/postgres/blob/master/src/backend/optimizer/plan/analyzejoins.c
https://github.com/postgres/postgres/blob/master/src/backend/optimizer/plan/analyzejoins.c
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/JoinEstimation.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/JoinEstimation.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/JoinEstimation.scala
https://huggingface.co/datasets/approximatelabs/tablib-v1-sample
https://huggingface.co/datasets/approximatelabs/tablib-v1-sample
https://en.wikipedia.org/wiki/Violin_plot
https://arxiv.org/abs/2310.07875
https://doi.org/10.1145/3514221.3517900
https://doi.org/10.1145/3514221.3517900
https://doi.org/10.14778/3489496.3489508

14778/3489496.3489508
[58] YihongWu and Pengkun Yang. 2019. Chebyshev polynomials, moment matching,

and optimal estimation of the unseen. The Annals of Statistics 47, 2 (2019), 857–
883.

[59] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[60] Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai. 2023. AutoCE:
An Accurate and Efficient Model Advisor for Learned Cardinality Estimation.
In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE,
Anaheim, CA, USA, 2621–2633. https://doi.org/10.1109/ICDE55515.2023.00201

[61] Xinyi Zhang, Hong Wu, Yang Li, Zhengju Tang, Jian Tan, Feifei Li, and Bin Cui.
2023. An Efficient Transfer Learning Based Configuration Adviser for Database
Tuning. Proceedings of the VLDB Endowment 17, 3 (2023), 539–552.

https://doi.org/10.14778/3489496.3489508
https://doi.org/10.1109/ICDE55515.2023.00201

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 NDV Estimators

	3 Methodology
	3.1 Model Architecture
	3.2 Leading Estimator Selection
	3.3 Estimator Fusion

	4 Experiments
	4.1 Experimental Setup
	4.2 Statistical Estimators Analysis
	4.3 Results of Learned Estimators
	4.4 Ablation Study
	4.5 Impact of Hyperparameters
	4.6 Flexibility Discussion
	4.7 Further Evaluation

	5 Related Works
	5.1 Sketch-based NDV Estimation
	5.2 Sampling-based NDV Estimation
	5.3 Method Selection in Databases

	6 Conclusion and future work
	References

